Gps Antenna with Metallic Conical Struc- Ture for Anti-jamming Applications

نویسندگان

  • Yoon-Ki Cho
  • Hee-Do Kang
  • Se-Young Hyun
  • Jong-Gwan Yook
چکیده

This paper presents a cost effective and simple antijamming method for global positioning system (GPS) antennas in the GPS L1 (1.563–1.587 GHz) band. The proposed structure is composed of a metallic conical structure with a microstrip patch antenna, which is selected as the basic element. To overcome intentional jamming signals coming from low elevation angles, the structure is applied around the low profile patch antenna. It is found that the maximum antijamming performance is achieved when the lower diameter (l), height (h), and upper diameter (d) of the structure are 90, 190, and 380mm, respectively. The experimental results show that the peak gain in the horizontal plane for the jamming signal decreases by about 6.2 dB from −6.16 to −12.36 dBic, while the peak gain in the vertical plane for the GPS signal increases by about 5.58 dB from 1.32 to 6.9 dBic. Moreover, it is shown that an improvement in the circular polarization (CP) characteristics is also obtained with the proposed structure. The measured fractional bandwidth is about 3.7% (1.561–1.62 GHz).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Rectangular Patch Antenna Loaded With Multiple C Slots for Multiple Applications

A new multiple C-slotted microstrip patch antenna is proposed in the present study. A patch antenna is a wide-beam narrowband antenna. The microstrip patch antenna consists of a very thin metallic strip (patch) placed a small fraction of a wavelength above a ground plane. The patch can be designed in any possible shape and normally made of conducting materials such as copper or gold. This study...

متن کامل

Miniaturized Gps Antenna Array Technology and Predicted Anti-jam Performance

NAVSYS has developed a miniaturized GPS antenna array technology that reduces the size of the antenna elements and the array dimensions. This technology enables GPS controlled reception pattern antenna arrays (CRPAs) with anti-jamming capability to be installed on vehicles where their size has previously prohibited their use. This includes aircraft where size and weight constraints resulted in ...

متن کامل

A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers w...

متن کامل

A New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment

The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...

متن کامل

Test Results of a Digital Beamforming GPS Receiver in a Jamming Environment

NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to provide additional gain in the direction of the GPS satellite signals. This increases the received signal/noise ratio on the satellites tracked and also improves the accuracy of the pseudo-range and carrier-phase observations. The directivity of the digital beams created from the antenna array also reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013